Some unichiral analogues of 2R,2′S-2-(1′-methyl-2′-pyrrolidinyl)-7-hydroxy-1,4-benzodioxane, a potent and selective α4β2-nAChR partial agonist, were designed by opening dioxane and replacing hydroxyl carbon with nitrogen. The resulting 3-pyridyl and m-hydroxyphenyl ethers have high α4β2 affinity and good subtype selectivity, which get lost if OH is removed from phenyl or the position of pyridine nitrogen is changed. High α4β2 affinity and selectivity are also attained by meta hydroxylating the 3-pyridyl and the phenyl ethers of (S)-N-methylprolinol and the phenyl ether of (S)-2-azetidinemethanol, known α4β2 agonists, although the interaction mode of the aryloxymethylene substructure cannot be assimilated to that of benzodioxane. Indeed, the α4β2 and α3β4 functional tests well differentiate behaviors that the binding tests homologize: both the 3-hydroxyphenyl and the 5-hydroxy-3-pyridyl ether of Nmethylprolinol are α4β2 full agonists, but only the latter is highly α4β2/α3β4 selective, while potent and selective partial α4β2 agonism characterizes the hydroxybenzodioxane derivative and its two opened semirigid analogues.

Chemistry and pharmacology of a series of unichiral analogues of 2-(2-pyrrolidinyl)-1,4-benzodioxane, prolinol phenyl ether, and prolinol 3-pyridyl ether designed as α4β2-nicotinic acetylcholine receptor agonists / Bolchi, Cristiano; Valoti, Ermanno; Gotti, Cecilia; Fasoli, Francesca; Ruggeri, Paola; Fumagalli, Laura; Binda, Matteo; Mucchietto, Vanessa; Sciaccaluga, Miriam; Budriesi, Roberta; Fucile, Sergio; Pallavicini, Marco. - In: JOURNAL OF MEDICINAL CHEMISTRY. - ISSN 0022-2623. - STAMPA. - 58:16(2015), pp. 6665-6677. [10.1021/acs.jmedchem.5b00904]

Chemistry and pharmacology of a series of unichiral analogues of 2-(2-pyrrolidinyl)-1,4-benzodioxane, prolinol phenyl ether, and prolinol 3-pyridyl ether designed as α4β2-nicotinic acetylcholine receptor agonists

FUCILE, Sergio;
2015

Abstract

Some unichiral analogues of 2R,2′S-2-(1′-methyl-2′-pyrrolidinyl)-7-hydroxy-1,4-benzodioxane, a potent and selective α4β2-nAChR partial agonist, were designed by opening dioxane and replacing hydroxyl carbon with nitrogen. The resulting 3-pyridyl and m-hydroxyphenyl ethers have high α4β2 affinity and good subtype selectivity, which get lost if OH is removed from phenyl or the position of pyridine nitrogen is changed. High α4β2 affinity and selectivity are also attained by meta hydroxylating the 3-pyridyl and the phenyl ethers of (S)-N-methylprolinol and the phenyl ether of (S)-2-azetidinemethanol, known α4β2 agonists, although the interaction mode of the aryloxymethylene substructure cannot be assimilated to that of benzodioxane. Indeed, the α4β2 and α3β4 functional tests well differentiate behaviors that the binding tests homologize: both the 3-hydroxyphenyl and the 5-hydroxy-3-pyridyl ether of Nmethylprolinol are α4β2 full agonists, but only the latter is highly α4β2/α3β4 selective, while potent and selective partial α4β2 agonism characterizes the hydroxybenzodioxane derivative and its two opened semirigid analogues.
2015
animals; brain chemistry; cell line; dioxanes; dose-response relationship, drug; humans; models, molecular; molecular conformation; nicotine; nicotinic agonists; patch-clamp techniques; phenyl ethers; pyridines; pyrrolidines; rats; receptors, nicotinic; structure-activity relationship; molecular medicine; drug discovery3003 pharmaceutical science; medicine (all)
01 Pubblicazione su rivista::01a Articolo in rivista
Chemistry and pharmacology of a series of unichiral analogues of 2-(2-pyrrolidinyl)-1,4-benzodioxane, prolinol phenyl ether, and prolinol 3-pyridyl ether designed as α4β2-nicotinic acetylcholine receptor agonists / Bolchi, Cristiano; Valoti, Ermanno; Gotti, Cecilia; Fasoli, Francesca; Ruggeri, Paola; Fumagalli, Laura; Binda, Matteo; Mucchietto, Vanessa; Sciaccaluga, Miriam; Budriesi, Roberta; Fucile, Sergio; Pallavicini, Marco. - In: JOURNAL OF MEDICINAL CHEMISTRY. - ISSN 0022-2623. - STAMPA. - 58:16(2015), pp. 6665-6677. [10.1021/acs.jmedchem.5b00904]
File allegati a questo prodotto
File Dimensione Formato  
Bolchi_Chemistry_2015.pdf

solo gestori archivio

Note: Articolo principale
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.62 MB
Formato Adobe PDF
1.62 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/927547
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 23
social impact